Question 1: What is a symbol? What information does it convey?
Answer: A short hand representation of an element is called symbol. It represents the following:

- Name of the element
- One atom of the element
- One mole of atoms. It represents 6.023×10^{23} atoms of the element.
- A definite mass of the element

Question 2: What is the difference between symbol of an element and formula of an element?

Answer: Symbol of an element represents the name of the element. It also represents one atom of the element. Example: H represents hydrogen and C represents carbon A formula of an element represents the number of atoms in the molecule of the compound. One molecule of hydrogen element contains two atoms of hydrogen; therefore the formula of hydrogen is H_{2}. 2 H represents two separate atoms of hydrogen, whereas H_{2} represents 1 molecule of hydrogen similarly the molecular formula of oxygen element and chlorine element is O_{2} and Cl_{2}.

Question 3: Define atomic mass of an element.
Answer: The atomic mass of an element is the relative mass of its atom as compared to the mass of C 12 atom taken as 12 units.

Question 4: State the laws of chemical combination.
Answer: Laws of chemical combinations are:
i) Law of Conservation of Mass: The law states that during any physical or chemical change, the total mass of the product remains equal to the total mass of the reactants.
ii) Law of Constant Composition: The law states that a chemical compound always contains same elements combined together in the same proportion by mass.
iii) Law of Multiple Proportions: The law states that when two elements combine with each other to form two or more compounds, the masses of one of the elements, which combine with fixed mass of the other, bear a simple whole number ratio to one another.

Question 5: In an experiment it was found that litharge, red oxide of lead and lead peroxide contained $92.83 \%, 90.6 \%$ and 86.6% of lead respectively. Show that these figures are in agreement with the Law of Multiple Proportions.

Answer: In litharge, the amount of lead $=92.83 \%$
The amount of oxygen $=100-92.83=7.17 \% 7.17 \mathrm{~g}_{\text {of }} \mathrm{O}_{2}$ combines with 92.83 g of lead

$$
1 \mathrm{~g} \text { of } \mathrm{O}_{2} \text { combines with } \frac{92.83}{7.17}=12.947 \mathrm{~g} \text { of lead }
$$

In red oxide of lead, the amount of $\mathrm{Pb}=90.6 \%$
Website: www.scientiatutorials.in $\boldsymbol{8}+919864920707$ E-mail: scientiatutorials@gmail.com

The amount of oxygen $=100-90.6=9.4 \%$
9.4 g of oxygen combines with 90.6 g of lead

1 g of oxygen combines with $\frac{90.6}{9.4}=9.638 \mathrm{~g}$
In lead peroxide, the amount of lead $=86.6 \%$
The amount of oxygen $=100-86.6=13.4 \%$
13.4 g of oxygen combines with 86.6 g of lead

1 g of oxygen combines with $\frac{86.6}{13.4}=6.462 \mathrm{~g}$

Thus, the different weights of lead combining with fixed weight $(1 \mathrm{~g})$ of oxygen are in the ratio 12.947: 9.638: $6.462=2: 1.5: 1$ or $4: 3: 2$

This is in line with the law of multiple proportions.
Question 6: What do you understand by atomicity of an element? Give an example of a polyatomic motecule.

Answer: The number of atoms that constitute one molecule of an element is called its atomicity. Sulphur is a polyatomic molecule: $\mathrm{S}_{8}-8$ is the atomicity.

Question 7: What do the following stand for? (i) \mathscr{P}_{4} and $4 \mathscr{P}$ (ii) O_{2} and 20
Answer:

- $\mathrm{P}_{4}-1$ molecule of phosphorus 4P-4 atoms of phosphorus
- $\mathrm{O}_{2}-1$ molecule of oxygen 2O-2 atoms of oxygen

Question 8: \mathcal{H} ow many gram atoms are present in 69 grams of sodium?

Answer:

$$
\text { No. of gram atoms }=\frac{\text { Mass of sodium }}{\text { Atomic mass of sodium }}
$$

$$
=\frac{69}{\text { atomic mass of sodium }}=\frac{69}{23}=3
$$

The number of gram atoms present in 69 grams of sodium is 3 .
Question 9: The mass of a single atom of an element Z is $2.65 \times 10^{-23} \mathrm{~g}$. What is its gram atomic mass?
Answer: $\quad 1$ atom of element Z has mass $=2.65 \times 10^{-23} \mathrm{~g}$
Hence, 6.023×10^{23} atoms of element Z have mass
Website: www.scientiatutorials.in $\boldsymbol{B}+919864920707$ E-mail: scientiatutorials@gmail.com

$$
=2.65 \times 10^{-23} \times 6.023 \times 10^{23}=15.69 \mathrm{~g}
$$

Question 10: What is gram molecular mass?
Answer: The amount of a substance whose mass in grams is numerically equal to its molecular mass is called gram molecular mass.
\left. Question 11: Calculate the molar mass of ${\mathcal{H} \mathcal{N O}_{3} .}^{[\mathcal{N}}=14, O=16, \mathcal{H}=1\right]$
Answer: Molar mass of HNO_{3}.

$$
\begin{aligned}
& \mathrm{H}=1 \times 1=01 \\
& \mathrm{~N}=14 \times 1=14 \\
& \mathrm{O}=16 \times 3=48
\end{aligned}
$$

$$
\text { Total mass }=63 \text { grams }
$$

Molar mass of $\mathrm{HNO}_{3}=63$ grams
Question 12: Calculate the formula mass of CaCl $_{2}$. $[C a=40, C\lceil=35.5]$
Answer: $\quad 1(\mathrm{Ca})+2(\mathrm{Cl}) 40+2 \mathrm{x}(35.5)=111 \mathrm{amu}$
The formula mass of CaCl_{2} is 111 amu .
Question 13: A certain non-metal X forms two oxides I and II. The mass percentage of oxygen in oxide $I\left(X_{4} \mathrm{O}_{6}\right)$ is 43.7, which is same as that of X in oxide II. Find the formula of the second oxide.

Solution	Oxygen	X
I Oxide:	43.7 parts	56.3 parts
II Oxide:	56.3 parts	43.7 parts

Now 43.7 parts of oxygen in I corresponds to $=6$ oxygen atoms
56.3 parts of oxygen in II corresponds to $\frac{6 \times 56.3}{43.7}=7.730$ atoms

Also 56.3 parts of X in I correspond to $=4 \mathrm{X}$ atom
$\therefore 43.7$ parts of X in II will correspond to $=\frac{4 \times 43.7}{56.3} \times 3.1 \times$ atoms
Now the atomic ratio X : O in the second

CHEMISTRY: FOR CLASS 9 PAGE: 4 ATOMS AND MOLECULES
Oxide $=\frac{3.1}{3.1}: \frac{7.73}{3.1}$ or $1: 25$ or $2: 5$
The formula of the second oxide is $\mathrm{X}_{2} \mathrm{O}_{5}$.

Question 14: (i) Calculate the mass of 0.2 moles of water $(O=16, \mathcal{H}=1)$.
(ii) What is the volume of 7.1 g of chlorine $(C[=35.5)$ at S.T.P.

Answer:
(i) Gram Molecular Weight of $\mathrm{H}_{2} \mathrm{O}=2 \times 1+16=18 \mathrm{~g}$

1 mole of water weighs 18 g
0.2 moles of water weighs $\frac{18}{1} \times 0.2=3.6 \mathrm{~g}$
(ii) Gram Molecular Weight of Cl_{2} (one mole) $=35.5 \times 2=71 \mathrm{~g}$.

7.1 g of Cl_{2} at S.T.P occupies $\frac{22.4}{71} \times 7.1=2.24$ litres

Question 15: The reaction between aluminium carbide and water takes place according to the following equation:

$$
\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{CH}_{4}+4 \mathrm{Al}(\mathrm{OH})_{3}
$$

Calculate the volume of CH_{4} released from 14.4 g of $\mathrm{Al}_{4} \mathrm{C}_{3}$ by excess water at S.T.P. $(\mathrm{C}=12, \mathrm{Al}=27)$
Answer: Molecular weight of $\mathrm{Al}_{4} \mathrm{C}_{3}$ is $(27 \times 4)+(12 \times 3)=144$
144 g of $\mathrm{Al}_{4} \mathrm{C}_{3}$ produces 3×22.4 litres of CH_{4} at S.T.P
$\therefore 14.4 \mathrm{~g} \mathrm{Al}_{4} \mathrm{C}_{3}$ produces $\frac{3 \times 22.4}{144} \times 14.4$

$$
=\frac{967.7}{144}=6.72 \text { litres }
$$

Question 16: A compound of sodium, sulphur and oxygen has the following percentage composition.
$\mathrm{Na}=\mathbf{2 9 . 1 1 \%}, \mathrm{S}=\mathbf{4 0 . 5 1 \%}, \mathrm{O}=\mathbf{3 0 . 3 8 \%}$.
Find its empirical formula $(\mathrm{O}=\mathbf{1 6}, \mathrm{Na}=\mathbf{2 3}, \mathrm{S}=\mathbf{3 2})$.

Answer:

Element	Percentage	Atomic weight	Relative number of atom	Simplest ratio
Na	29.11	23	$29.11 / 23=1.26$	$1.26 / 1.26=1$
S	40.51	32	$40.51 / 32=1.26$	$1.26 / 1.26=1$
O	30.38	16	$30.38 / 16=1.89$	$1.89 / 1.26=1.5$

Empirical formula is $\mathrm{NaSO}_{1.5}$ or to its nearest whole number i.e., the formula is $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

Question 17: Solid ammonium dichromate with relative molecular mass of $\mathbf{2 5 2} \mathbf{g}$ decomposes

 according to the equation.$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}
$$

(i) What volume of nitrogen at S.T.P will be evolved when 63 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is decomposed?
(ii) If 63 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated above $100^{\circ} \mathrm{C}$, what will be the loss of mass? ($\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cr}=52$).

Answer: 252 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ gives one mole or 22.4 litres of N_{2} at S.T.P as per the given equation.

$$
\therefore 63 \mathrm{~g} \text { of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{22.4}{252} \times 63=\frac{1411.2}{252}=5.6 \text { litres of } \mathrm{N}_{2} \text { at S.T.P }
$$

(ii) At temperatures above $100^{\circ} \mathrm{C}$ water is in the form of steam.

$$
\text { Products as vapours are } \mathrm{N}_{2} \text { and } \mathrm{H}_{2} \mathrm{O} \text {. }
$$

The transformation of solids and liquids into gaseous substances results in loss of mass.
Total weight of gaseous products $=\{(2 \times 14)+4(2 \times 1)+16\}$ $=28+72=100 \mathrm{~g}$

Heating 252 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ causes 100 g loss of mass.
\therefore Heating 63 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ causes $\frac{100}{252} \times 63=25 \mathrm{~g}$ loss of mass.
The loss of mass is 25 g
Question 18: How many litres of ammonia are present in 3.4 kg of it ? $(\mathrm{N}=14, \mathrm{H}=1)$
Answer: Gram molecular weight of $\mathrm{NH}_{3}=14+(1 \times 3)=17 \mathrm{~g}$.
17 g of $\mathrm{NH}_{3}=22.4$ litres
Website: www.scientiatutorials.in $\boldsymbol{B}+919864920707$ E-mail: scientiatutorials@gmail.com

$$
\begin{aligned}
\therefore 3.4 \times 10^{3} \mathrm{~g} \text { of } \mathrm{NH}_{3} & =\frac{22.4}{17} \times 3.4 \times 10^{3} \\
& =\frac{76160}{17} \\
& =4480 \text { litres }
\end{aligned}
$$

Question 19: About 640 mL of carbon monoxide is mixed with 800 mL of oxygen and ignited in an enclosed vessel. Calculate the total volume of gases after the burning is completed. All volumes are measured at S.T.P.

Answer: The chemical reaction actually taking place is:

Volume of O_{2} used $=320 \mathrm{~mL}$.
Volume of O_{2} left $=800-320=480 \mathrm{~mL}$.
Volume of CO_{2} formed $=640 \mathrm{~mL}$.
Therefore the total volume of gases after burning is $480+640=1120 \mathrm{~mL}$.
Question 20: Calculate the number of moles of ammonium sulphate present in $15.84 \mathbf{k g}$ of it.

$$
(H=1, N=14, O=16, S=32)
$$

Answer: Molecular weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& =(2 \times 14)+(2 \times 4)+32+(16 \times 4) \\
& =132 \text { a.m.u. }
\end{aligned}
$$

132 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=1 \mathrm{~mole}$

$$
15.84 \times 10^{3} \mathrm{~g} \text { of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\frac{1}{132} \times 15.84 \times 10^{3}=120 \text { moles }
$$

The number of moles of ammonium sulphate present in 15.84 kg is 120 moles.

Question 21: What is the mass of 0.2 mole of lead nitrate? $(\mathrm{N}=14, \mathrm{O}=16, \mathrm{~Pb}=207)$.

Answer:

$$
\text { Gram molecular weight of } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \quad=207+(2 \times 14)+2(16 \times 3)
$$

1 mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is 331 g
Therefore 0.2 mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is $331 \times 0.2=66.2 \mathrm{~g}$

Question 22: Find the total percentage of oxygen in magnesium nitrate crystals i.e., $\mathcal{M g}\left(\mathcal{N O}_{3}\right)_{2} .6 \mathcal{H}_{2} \mathrm{O}$ (Atomic weight: $\mathcal{H}=1, \mathcal{N}=14, O=16, \mathcal{M g}=24$).

Answer: \quad Molecular weight of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =24+2(14+16 \times 3)+6(2 \times 1+16) \\
& =24+124+108 \\
& =256 \text { a.m.u }
\end{aligned}
$$

Atomic mass of oxygen in $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is,

$$
=2(16 \times 3)+6(16)=96+96=192
$$

\therefore Percentage of oxygen $=\frac{192}{256} \times 100=75 \%$
Question 23: A compound has the following percentage composition $\mathcal{H}=2.04 \%, S=32.65 \%, O=65.31 \%$. Relative molecular mass of the compound $=98$. Calculate its molecular formula $(\mathcal{H}=1, S=$ $32, O=16$).

Answer:

Element	Percentage weight	Atomic weight	Relative number of atoms	Simplest ratio of atoms
H	2.04	1	$2.04 / 1=2.04$	$2.04 / 1.02=2$
S	32.65	32	$32.65 / 32=1.02$	$1.02 / 1.02=1$
O	65.31	16	$65.31 / 16=4.08$	$4.08 / 1.02=4$

ATOMS AND MOLECULES

Empirical formula is $\mathrm{H}_{2} \mathrm{SO}_{4}$
Empirical formula mass $=(2 \times 1)+32+(16 \times 4)$

$$
=98 .
$$

Relative molecular mass $=98$
$\mathrm{n}=\frac{\text { Relative molecular mass }}{\text { Empirical formula mass }}=\frac{98}{98}=1$
\therefore Molecular formula $=\mathrm{H}_{2} \mathrm{SO}_{4}$

Question 24: Calculate the amount of nitrogen supplied to soil by 1 quintal (100 kg) of ammonium nitrate $(\mathcal{N}=14, \mathcal{H}=1, O=16)$.

Answer: Molecular weight of $\mathrm{NH}_{4} \mathrm{NO}_{3} \quad=14+(4 \times 1)+14+(16 \times 3)$

$$
=80 \mathrm{~g}
$$

Molecular weight of N in the above formula $=14 \times 2=28$
80 units of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ yield 28 units of Nitrogen.
$\therefore 100 \mathrm{~kg}$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ yield $\frac{28}{80} \times 100=35 \mathrm{~kg}$ of nitrogen
Question 25: Identify diatomic molecules from the following:
(i) $\mathcal{H C l}$
(ii) \mathscr{P}_{4}
(iii) $\mathcal{H e}$
(iv) O_{3}
(iv) $\mathcal{H}_{2} S$
(vi) CO

Answer: $\quad \mathrm{HCl}, \mathrm{CO}$ are diatomic.

